Synthesis of Heterocyclic Ketene N,O-Acetals and Their Reactions with α , β -Unsaturated Esters

Zhi-Tang Huang* and Ping-Cheng Zhang

Institute of Chemistry, Academia Sinica, Beijing, PR of China

Received April 21, 1989

Key Words: Ketene N,O-acetals, heterocyclic / 5H-Oxazolo[2,3-a]pyridine derivatives

Ketene dithioacetals 2 react with 2-aminoethanol or 1-amino-2propanol to afford the corresponding substituted 2-methyleneoxazolidines 3 and 4. In some cases, 3 and 4 react with α,β -unsaturated esters to give 5*H*-oxazolo[3,2-*a*]pyridine derivatives 5 by an electrophilic addition and cyclocondensation sequence.

Heterocyclic ketene aminals are versatile starting materials for the synthesis of a wide variety of fused heterocycles. Although their synthesis and reactions have received much attention¹⁻¹⁸, the synthesis and reactions of their corresponding sulfur and oxygen analogues — heterocyclic ketene N,S- and N,O-acetals — have only been studied in a few cases^{3-7,19-22}. Recently, the synthesis and some reactions of heterocyclic ketene N,S-acetals have been reported by us²³. Here, we describe the synthesis of some new heterocyclic ketene N,O-acetals and their reactions with α , β unsaturated esters. Using the latter reaction, several 5*H*oxazolo[3,2-*a*]pyridine derivatives can be synthesized.

Heterocyclic ketene N,O-acetals $3\mathbf{a} - \mathbf{i}$ are synthesized by the reaction of ketene dithioacetals $2\mathbf{a} - \mathbf{i}$ with 2-aminoethanol. The starting materials 2 are prepared by the reaction of active methylene compounds 1 with sodium hydride and carbon disulfide, followed by methyl iodide in a onepot reaction. When both X and Y are electron-withdrawing groups, $3\mathbf{a} - \mathbf{c}$ may be obtained by reaction of $2\mathbf{a} - \mathbf{c}$ with 2-aminoethanol in boiling absolute ethanol. In the case of $2\mathbf{d} - \mathbf{i}$, where only one electron-withdrawing group, an aroyl

Synthese von heterocyclischen Keten-N,O-acetalen und ihre Reaktionen mit α,β -ungesättigten Estern

Ketendithioacetale 2 reagieren mit 2-Aminoethanol oder 1-Amino-2-propanol zu den entsprechenden substituierten 2-Methylenoxazolidinen 3 und 4. Diese ergeben in einigen Fällen mit α_{β} -ungesättigten Estern 5H-Oxazolo[3,2-a]pyridin-Derivate über eine Additions- und Cyclokondensations-Sequenz.

group, is present, $3\mathbf{d} - \mathbf{i}$ can not be obtained by this method, not even in boiling toluene or *N*,*N*-dimethylformamide. This differs from the reaction of **2** with 1,2-ethanediamine or 2-aminothioethanol; in these cases heterocyclic ketene aminals²⁴⁾ or ketene N,S-acetals²³⁾ are easily formed. $3\mathbf{d} - \mathbf{i}$ can be obtained from $2\mathbf{d} - \mathbf{i}$ with 2-aminoethanol in the presence of metallic sodium in order to increase the nucleophilicity of the 2-aminoethanol.

Heterocyclic ketene N,O-acetal **3j** is synthesized by the reaction of **3a** with sodium ethoxide, eliminating one acetyl group.

Heterocyclic ketene N,O-acetals 4 are similarly obtained from the reaction of 2 with 1-amino-2-propanol.

The constitutions of the products 3 and 4 were confirmed by the elemental analyses and mass spectra. Only one set of signals was observed in the product ¹H- and ¹³C-NMR spectra, indicating that these compounds are not a mixture. The absence of methine or methylene proton signals and the presence of a nitrogen proton signal in the ¹H-NMR spectra of the products exclude the structure of tautomer **A**. The presence of the ketonic or ester carbonyl carbon signal in the ¹³C-NMR spectra of the products also excludes the structure of tautomer **B**. The stereochemical problem of distinguishing *E* or *Z* isomers of 3 and 4 is solved by the intra-

Chem. Ber. 122 (1989) 2011-2016 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1989 0009-2940/89/1010-2016 \$ 02.50/0

Table 1. ¹H-NMR data (δ values, J in Hz) of 3 and 4 in CDCl₃ with TMS as internal standard

	Hª	Hª	H۶	H,,	H¢	H₫	H۴	Hť	H ^g	H ^h
3a	3	.81	4.62 (J =	= 8.0)	11.22 (s)	2.3	6 (s)			
3b	3	.76	4.58 (J =	= 8.2)	11.05 (s)	2.36 (s)	3.69 (s)			
3c	3	.82	4.64 (J =	= 8.0)	8.51 (s)	3.68 (s)				
3d	3	.58	4.29 (J =	= 8.0)	9.70 (s)	5.58 (s)		7.33-7.90 (m	n)	
3e	3	.71	4.40 (J =	= 8.0)	9.32 (s)	5.56 (s)	7.71 (d)	7.13 (d)	2.33 (s)	•
3f	3	.68	4.37 (J =	= 8.0)	9.15 (s)	5.47 (s)	7.70 (d)	6.77 (d)	3.74 (s)	
3g	3	.77	4.47 (J =	= 8.0)	8.72 (s)	5.49 (s)	7.74 (d)	7.30 (d)		
3h	3	.73	4.44 (J =	= 8.3)	8.99 (s)	5.46 (s)		6.91-7.49 (n	n)	
3i	3	.70	4.46 (J =	= 8.0)	9.15 (s)	6.03 (s)	7.69 —	7.93 (m)	7.25 —	8.49 –
									7.47 (m)	8.56 (m)
3j	3	.70	4.41 (J =	= 8.0)		4.92 (s)	2.02 (s)			
4a	3.90	3.38	4.99 (sext)	1.54 (d)	11.10 (s)	2.3	86 (s)			
	$J_{aa'} =$	$10.0, J_{ab} =$	= 8.0, $J_{a'b}$ = 8.0							
4c	3.97	3.43	5.08 (sext	1.52 (d)	8.55 (s)	3.73 (s)				
	$J_{aa'} =$	9.6, $J_{ab} =$	8.4, $J_{a'b} = 7.6$							
4d	3.80	3.25	4.69 (sext)	1.40 (d)	9.65 (s)	5.38 (s)		7.20-7.82 (n	n)	
	$J_{aa'} =$	9.6, $J_{ab} =$	8.0, $J_{a'b} = 7.2$							
4e	3.81	3.28	4.76 (sext)	1.44 (d)	9.19 (s)	5.48 (s)	7.65 (d)	7.08 (d)	2.32 (d)	
	$J_{aa'} =$	9.0, $J_{ab} =$	8.4, $J_{a'b} = 7.8$							
4f	3.81	3.27	4.76 (sext)	1.45 (d)	9.35 (s)	5.47 (s)	7.74 (d)	6.80 (d)	3.76 (s)	
	$J_{aa'} =$	9.0, $J_{ab} =$	7.8, $J_{a'b} = 7.8$							
4g	3.80	3.30	4.81 (sext)	1.46 (d)	9.40 (s)	5.46 (s)	7.72 (d)	7.27 (d)		
	$J_{aa'} =$	9.0, $J_{ab} =$	8.2, $J_{a'b} = 8.0$							
4h	3.82	3.29	4.78 (sext)	1.43 (d)	9.35 (s)	5.45 (s)		6.94-7.52 (n	n)	
	$J_{aa'} =$	9.0, $J_{ab} =$	8.0, $J_{a'b} = 7.6$							
4 i	3.83	3.29	4.75 (sext)	1.43 (d)	9.96 (s)	6.14 (s)	7.48 —	8.03 (m)	6.93 -	8.43
	$J_{aa'} =$	9.2, $J_{ab} =$	8.0, $J_{ab} = 7.2$						7.72 (m)	8.51 (m)

molecular hydrogen bond formation. In general, compounds with intramolecular hydrogen bonds are more stable. Intramolecular hydrogen bond formation in 3 and 4 is proven by the downfield shift ($\delta = 8.51 - 11.22$, see Table 1) of the NH signal in the ¹H-NMR spectra. This suggests that 3c - jand 4c - i might be in *E* configuration and 3b in *Z* configuration. The ¹H- and ¹³C-NMR data of 3 and 4 are listed in Tables 1 and 2, respectively.

From the spectral data listed in Tables 1 and 2 and in the experimental part, the bathochromic shift of the carbonyl and double bond absorption in the IR spectra and the upfield shift of the carbonyl carbon signal in the ¹³C-NMR spectra are due to conjugation of the carbonyl group with the double bond and the nitrogen and oxygen atoms. Ketene N,O-acetals 3 show the characteristic A_2B_2 pattern in the ¹H-NMR spectra due to the $-NH-CH_2-CH_2-$ O- structural moiety, while in ketene N,O-acetals 4, H^{aa'} and H^b form an ABX system, and H^b is further split by the vicinal protons of the methyl group.

Table 2. ¹³C-NMR data (δ values) of 3 and 4 in CDCl₃ with TMS as internal standard

	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11
		42.2	67.9	171.5	103.6	19	6.3	3	1.2		
3b		42.3	68.2	171.1	88.2	196.0	167.4	29.7	50.5		
3d		43.0	67.3	170.6	74.0	187.4	139.9	128.1	126.7	130.5	
3e		43.0	67.3	170.6	73.8	187.4	137.2	128.8	126.8	140.8	21.4
3f		43.0	67.2	170.4	73.4	186.7	132.5	128.6	113.2	161.6	55.2
3g		43.0	67.5	170.8	74.0	186.1	136.6	129.2	128.3	138.3	
3ň		42.9	67.3	169.8	73.3	180.1	146.9	129.1	126.7	127.4	
3i		42.9	67.2	169.4	101.4	194.2	28.7				
4 a	19.5	48.3	77.4	170.8	98.9	19	6.2	3	1.1		
4d	19.4	49.1	76.2	169.8	73.8	187.0	139.8	127.7	126.4	130.1	
4f	19.9	49.5	76.4	170.1	73.3	186.7	132.5	128.7	113.3	161.6	55.2
4h	19.4	49.4	76.4	169.6	73.4	180.8	147.2	128.8	126.7	127.2	

Table 3.	¹ H-NMR	data (δ	values, J	in Hz) of 5 in	CDCl ₃	with	TMS as in	nternal standard	ł
----------	--------------------	---------	-----------	-------	------------------	-------------------	------	-----------	------------------	---

Table 4. 13 C-NMR data (δ values) of 5 in CDCl₃ with TMS as internal standard

	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16
 5a		43.4	69.2	158.6	99.1	143.2	110.4	162.9	189.2	131.0	131.3	113.4	160.6	55.4		
5b		43.4	69.3	157.1	97.0	145.5	112.6	159.1	189.9	138.0	128.7	128.3	132.8		165.9	52.6
5e		43.8	69.5	156.8	97.1	144.9	113.1	159.3	181.8	146.9	134.0	127.9	133.2		165.6	52.8
5f	20.0	49.7	79.1	156.6	97.5	145.9	112.3	159.4	189.5	135.6	129.1	129.0	143.7	21.6	165.9	52.6
5h	20.0	49.5	79.3	156.9	103.6	145.6	112.6	159.3	188.6	136.4	[·] 130.3	128.5	139.1		165.9	52.7

Among the ¹³C-NMR spectral data, the upfield shift of C-5 is noteworthy ($\delta = 73.3 - 103.6$); it indicates that the electron density is higher at this carbon and nucleophilic attack of this carbon on an electron-deficient group may be

expected, as in ketene aminals and ketene N,S-acetals. In the reaction with α , β -unsaturated esters, aroyl-substituted heterocyclic ketene aminals and ketene N,S-acetals react smoothly with propiolic esters, acetylenedicarboxylic esters, and even with acrylic esters, to form fused biheterocycles by an electrophilic addition and cyclocondensation sequence^{12-17,23)}. In the reaction of aroyl-substituted heterocyclic ketene N,O-acetals with ethyl propiolate, only the more reactive 4-methoxybenzoyl-substituted ketene N,Oacetal **3f** can react with ethyl propiolate to give the 5*H*oxazolo[3,2-*a*]pyridine derivative **5a** in satisfactory yield, and other aroyl-substituted ketene N,O-acetals react sluggishly with this reagent. However, aroyl-substituted ketene N,O-acetals react smoothly with the more active electrophile dimethyl acetylenedicarboxylate in refluxing ethanol to give the oxazolidine ring-fused biheterocycles in good to excellent yields.

The structure of the products 5 was established from the spectral data and elemental analyses. The ¹H- and ¹³C-NMR data of 5 are listed in Tables 3 and 4, respectively.

Altogether, this reaction provids a new and convenient method for the synthesis of biheterocycles containing an α -pyridone fused with an oxazolidine ring.

This work was supported by the National Natural Science Foundation of China.

Experimental

Melting points are not corrected. – IR spectra: Perkin-Elmer 782. – UV spectra: Hitachi 340. – ¹H-NMR spectra: Varian EM-360 L. – ¹³C-NMR spectra: Jeol FX-100 and Varian XL-200. – MS: AEI MS-50. – Elemental analyses: Analytical Laboratory of the Institute.

2-(Diacetylmethylene)oxazolidine (**3a**): A mixture of 8.16 g (40 mmol) of **2a** and 3.05 g (50 mmol) of 2-aminoethanol in 30 ml of absolute ethanol was heated for 10 h at reflux, until no odor of methanethiol was evolved. After partial removal of the solvent, 2.90 g (43%) of **3a** crystallized, m. p. 130-132°C, - IR (KBr): $\tilde{v} = 3210 \text{ cm}^{-1}$ (NH), 1615 (C=O), 1587, 1550. - UV (ethanol): λ_{max} (lg ε) = 270 nm (4.10). - MS: $m/z = 169 \text{ [M^+]}$.

C₈H₁₁NO₃ (169.2) Calcd. C 56.79 H 6.56 N 8.28 Found C 57.05 H 6.58 N 7.93

(Z)-2-[Acetoxy(acetyl)methylene]oxazolidine (3b): As described for 3a, 3.00 g (54%) of 3b, m. p. 132-134 °C, was obtained from 6.60 g (30 mmol) of 2b and 2.24 g (40 mmol) of 2-aminoethanol in 30 ml of ethanol. – IR (KBr): $\tilde{v} = 3205$ cm⁻¹ (NH), 1670 (ester C=O), 1610 (C=O), 1555. – UV (ethanol): λ_{max} (lg ε) = 276 nm (4.10), 240 (3.99). – MS: m/z = 185 [M⁺].

(E)-2-[Acetyl(cyano)methylene]oxazolidine (3c): As described for 3a, 0.46 g (55%) of 3c, m. p. 149–151°C, was obtained from 1.02 g (5 mmol) of 2c and 0.37 g (6 mmol) of 2-aminoethanol in 25 ml of ethanol. – IR (KBr): $\tilde{v} = 3330 \text{ cm}^{-1}$ (NH), 2220, 2202 (CN), 1675 (ester C=O), 1615, 1595. – UV (ethanol): λ_{max} (lg ε) = 260 nm (4.17). – MS: $m/z = 168 \text{ [M^+]}$.

C₇H₈N₂O₃ (168.2) Calcd. C 50.00 H 4.80 N 16.66 Found C 49.48 H 4.86 N 16.85

(E)-2-(Benzoylmethylene) ∞ azolidine (3d): 0.14 g (6 mmol) of sodium was added to a solution of 0.37 g (6 mmol) of 2-aminoethanol in 3 ml of dry tetrahydrofuran with stirring. When the sodium had reacted, a solution of 1.12 g (5 mmol) of 2d in 10 ml of dry tetrahydrofuran was added, and the mixture was heated for 10 h at reflux, until no odor of methanethiol was evolved. The whole mixture was poured into 20 ml of water and extracted with chloroform (10 ml × 3). The extract was dried with anhydrous sodium sulfate, and after removal of the solvent the crude product was recrystallized from methanol; yield 0.60 g (63%), m. p. 104–106 °C. – IR (KBr): $\tilde{v} = 3260 \text{ cm}^{-1}$ (NH), 1620 (C=O), 1575, 1529, 1500. – UV (ethanol): λ_{max} (lg ε) = 322 nm (4.23), 242 (3.84). – MS: m/z = 189

 $\begin{bmatrix} M^{+} \end{bmatrix}. \\ C_{11}H_{11}NO_{2} (189.2) \quad Calcd. C 69.82 H 5.86 N 7.40 \\ Found C 69.67 H 5.82 N 7.34$

(*E*)-2-[(4-Methylbenzoyl)methylene]oxazolidine (3e): As described for 3d, 1.20 g (59%) of 3e, m. p. 177–179 °C, was obtained from 2.38 g (10 mmol) of 2e, 0.74 g (12 mmol) of 2-aminoethanol, and 0.28 g (12 mmol) of sodium. – IR (KBr): $\tilde{v} = 3280 \text{ cm}^{-1}$ (NH), 1618 (C = O), 1598, 1570, 1522, 1508. – UV (ethanol): λ_{max} (lg ε) = 320 nm (4.08), 256 (3.70). – MS: $m/z = 203 \text{ [M}^+\text{]}$.

 $\begin{array}{c} C_{12}H_{13}NO_2 \ (203.2) \\ Found \ C \ 70.92 \ H \ 6.45 \ N \ 6.89 \\ Found \ C \ 70.92 \ H \ 6.40 \ N \ 6.67 \end{array}$

(E)-2-[(4-Methoxybenzoyl)methylene]oxazolidine (3f): Like 3d, 0.66 g (60%) of 3f, m. p. 140-142 C, was obtained from 1.27 g (5 mmol) of 2f, 0.37 g (6 mmol) of 2-aminoethanol, and 0.14 g (6 mmol) of sodium. - IR (KBr): $\tilde{v} = 3270 \text{ cm}^{-1}$ (NH), 1620 (C=O), 1595, 1580, 1515. - UV (ethanol): λ_{max} (lg ε) = 322 nm (4.32), 268 (3.76). - MS: m/z = 219 [M⁺].

(E)-2-[(4-Chlorobenzoyl)methylene]oxazolidine (3g): As for 3d, 1.34 g (60%) of 3g, m. p. 197–200 °C, was obtained from 2.59 g (10 mmol) of 2g, 1.22 g (20 mmol) of 2-aminoethanol, and 0.28 g (12 mmol) of sodium. – IR (KBr): $\tilde{v} = 3270 \text{ cm}^{-1}$ (NH), 1621 (C=O), 1570, 1521. – UV (ethanol): λ_{max} (lg ε) = 324 nm (4.32), 228 (4.11). – MS: $m/z = 223 \text{ [M^+]}.$

 $\begin{array}{rrrr} C_{11}H_{10}ClNO_2 \ (223.7) & Calcd. \ C \ 59.07 & H \ 4.51 & N \ 6.26 \\ & Found \ C \ 59.09 & H \ 4.50 & N \ 6.29 \end{array}$

(*E*)-2-[(2-Thiophenecarbonyl)methylene]oxazolidine (**3h**): Like **3d**, 0.58 g (59%) of **3h**, m. p. 117–120 °C, was obtained from 1.15 g (5 mmol) of **2h**, 0.74 g (12 mmol) of 2-aminoethanol, and 0.14 g (6 mmol) of sodium. – IR (KBr): $\tilde{v} = 3260 \text{ cm}^{-1}$ (NH), 1615 (C=O), 1535, 1515. – UV (ethanol): λ_{max} (lg ε) = 336 nm (4.22), 262 (3.64), 240 (sh). – MS: $m/z = 195 \text{ [M}^{+}$].

 $\begin{array}{cccc} C_9H_9NO_2S \ (195.2) & Calcd. \ C \ 55.36 & H \ 4.65 & N \ 7.17 \\ & Found \ C \ 55.10 & H \ 4.52 & N \ 7.14 \end{array}$

(*E*)-2-(*Picolinoylmethylene*)*oxazolidine* (**3i**): As described for **3d**, 0.47 g (49%) of **3i**, m. p. 162–165 °C, was obtained from 1.13 g (5 mmol) of **2i**, 0.74 g (12 mmol) of 2-aminoethanol, and 0.14 g (6 mmol) of sodium. – IR (KBr): $\tilde{v} = 3290 \text{ cm}^{-1}$ (NH), 1620 (C=O), 1580, 1560, 1525. – UV (ethanol): λ_{max} (lg ε) = 334 nm (4.21), 236 (4.03). – MS: *m/z* = 190 [M⁺].

 $\begin{array}{ccc} C_{10}H_{10}N_2O_2 \ (190.2) & Calcd. \ C \ 63.14 & H \ 5.30 & N \ 14.73 \\ Found \ C \ 62.95 & H \ 5.44 & N \ 14.60 \end{array}$

(E)-2-(Acetylmethylene)oxazolidine (**3j**): 0.85 g (5 mmol) of **3a** was heated at reflux in a sodium ethoxide solution (0.12 g of sodium in 10 ml of absolute ethanol) for 10 h. After removal of ethanol, the residue was dissolved in 10 ml of water, and the solution was neutralized with dilute hydrochloric acid and extracted with chloroform (3 \times 10 ml). The extract was dried with anhydrous sodium sulfate; after removal of the solvent 0.25 g (39%) of **3j**, m.p. 106-108 °C, was obtained. - IR (KBr): $\tilde{v} = 3250$ cm⁻¹ (NH), 1630

(C = O), 1550, 1500. – UV (ethanol): λ_{max} (lg ε) = 228 nm (4.22). – MS: $m/z = 127 [M^+]$.

2-(Diacetylmethylene)-5-methyloxazolidine (4a): As described for **3a**, 2.60 g (47%) of **4a**, m. p. 118 - 120 °C, was obtained from 6.12 g (30 mmol) of 2a and 2.25 g (30 mmol) of 1-amino-2-propanol in 30 ml of ethanol. – IR (KBr): $\tilde{v} = 3239 \text{ cm}^{-1}$ (NH), 1600 (C = O), 1550. – UV (ethanol): λ_{max} (lg ϵ) = 270 nm (4.34). – MS: m/z = 183 [M⁺].

(E)-2-[Acetyl(cyano)methylene]-5-methyloxazolidine (4c): As for 3a, 0.74 g (81%) of 4c, m. p. 152-154°C, was obtained from 1.02 g (5 mmol) of 2c and 0.38 g (5 mmol) of 1-amino-2-propanol. – IR (KBr): $\tilde{v} = 3330 \text{ cm}^{-1}$ (NH), 2205 (CN), 1665 (ester C=O), 1605. – UV (ethanol): λ_{max} (lg ϵ) = 254 nm (4.42). – MS: $m/z = 182 [M^+].$

C₈H₁₀N₂O₃ (182.2) Calcd. C 52.74 H 5.53 N 15.38 Found C 52.72 H 5.41 N 15.25

(E)-2-(Benzoylmethylene)-5-methyloxazolidine (4d): As for 3d, 0.63 g (31%) of 4d, m. p. 68 - 70 °C, was obtained from 2.24 g (10 mmol) of 2d, 1.80 g (24 mmol) of 1-amino-2-propanol, and 0.28 g (12 mmol) of sodium in tetrahydrofuran. – IR (KBr): $\tilde{v} = 3240$ cm^{-1} (NH), 1615 (C=O), 1590, 1575, 1526, 1500. – UV (ethanol): λ_{max} (lg ε) = 320 nm (4.24), 240 (4.01). - MS: $m/z = 203 [M^+]$.

C12H13NO2 (203.2) Calcd. C 70.92 H 6.45 N 6.89 Found C 70.36 H 6.40 N 6.93

(E)-5-Methyl-2-[(4-methylbenzoyl)methylene]oxazolidine (4e): As described for 3d, 0.24 g (22%) of 4e, m.p. 108-110°C, was obtained from 1.19 g (5 mmol) of 2e, 0.45 g (6 mmol) of 1-amino-2-propanol, and 0.14 g (6 mmol) of sodium. – IR (KBr): $\tilde{v} = 3260$ cm⁻¹ (NH), 1615 (C=O), 1570, 1539, 1505. – UV (ethanol): λ_{max} $(\lg \epsilon) = 322 \text{ nm} (4.30), 250 (3.84). - \text{MS}: m/z = 217 [M⁺].$ C13H15NO2 (217.3) Calcd. C 71.86 H 6.96 N 6.45 Found C 71.57 H 6.78 N 6.25

(E)-2-[(4-Methoxybenzoyl)methylene]-5-methyloxazolidine (4f): Like 3d, 0.50 g (43%) of 4f, m.p. 118-121°C, was obtained from 1.27 g (5 mmol) of 2f, 0.90 g (12 mmol) of 1-amino-2-propanol, and 0.14 g (6 mmol) of sodium. - IR (KBr): $\tilde{v} = 3250$ cm⁻¹ (NH), 1615 (C=O), 1590, 1575, 1515. – UV (ethanol): λ_{max} (lg ϵ) = 322 nm (4.34), 270 (3.98). - MS: $m/z = 233 [M^+]$.

> C13H15NO3 (233.3) Calcd. C 66.93 H 6.48 N 6.00 Found C 66.82 H 6.48 N 6.19

(E)-2-[(4-Chlorobenzoyl)methylene]-5-methyloxazolidine (4g): Like 3d, 0.53 g (45%) of 4g, m. p. 126-128°C, was obtained from 1.30 g (5 mmol) of 2g, 0.90 g (12 mmol) of 1-amino-2-propanol, and 0.14 g (6 mmol) of sodium. - IR (KBr): $\tilde{v} = 3290$ cm⁻¹ (NH), 1620 (C=O), 1575, 1530, 1510. – UV (ethanol): λ_{max} (lg ϵ) = 326 nm (4.28), 248 (4.06). - MS: $m/z = 237 [M^+]$.

C12H12CINO2 (237.7) Calcd. C 60.64 H 5.09 N 5.89 Found C 60.46 H 5.14 N 5.89

(E)-5-Methyl-2-[(2-thienylcarbonyl)methylene]oxazolidine (4h): As described for 3d, 0.52 g (50%) of 4h, m. p. 115-117°C, was obtained from 1.15 g (5 mmol) of 2h, 0.90 g (12 mmol) of 1-amino-2-propanol, and 0.14 g (6 mmol) of sodium. – IR (KBr): $\tilde{v} = 3275$ cm⁻¹ (NH), 1620 (C = O), 1540, 1505. – UV (ethanol): λ_{max} (lg ϵ) = 335 nm (4.28), 262 (3.74). - MS: $m/z = 209 [M^+]$.

C10H11NO2S (209.3) Calcd. C 57.39 H 5.30 N 6.69 Found C 57.19 H 5.35 N 6.54

336 nm (4.31), 240 (3.80). - MS: $m/z = 204 [M^+]$. C11H12N2O2 (204.2) Calcd. C 64.69 H 5.92 N 13.72 Found C 64.64 H 5.74 N 13.55

(E)-5-Methyl-2-(picolinoylmethylene)oxazolidine (4i): As de-

scribed for 3d, 0.36 g (35%) of 4i, m. p. 106-108°C, was obtained from 1.13 g (5 mmol) of 2i, 0.90 g (12 mmol) of 1-amino-2-propanol, and 0.14 g (6 mmol) of sodium. - IR (KBr): $\tilde{v} = 3280$ cm⁻¹ (NH), 1618 (C=O), 1580, 1560, 1530. – UV (ethanol): λ_{max} (lg ϵ) =

2,3-Dihydro-8-(4-methoxybenzoyl)-5H-oxazolo[3,2-a]pyridin-5one (5a): A mixture of 153 mg (0.7 mmol) of 3f and 69 mg (0.7 mmol) of ethyl propiolate in 5 ml of ethanol was heated for 2 d at reflux. After partial removal of ethanol, 5a crystallized; yield 100 mg (53%), m. p. $184 - 186 \,^{\circ}C. - IR$ (KBr): $\tilde{v} = 1680$ (amide C=O), 1650 (C=O), 1605, 1520. – UV (ethanol): λ_{max} (lg ϵ) = 320 nm (4.38), 290 (sh). - MS: $m/z = 271 [M^+]$.

C₁₅H₁₃NO₄ (271.3) Calcd. C 66.41 H 4.83 N 5.16 Found C 66.26 H 4.78 N 5.01

Methyl 2,3-Dihydro-8-benzoyl-5-oxo-5H-oxazolo[3,2-a]pyridin-7-carboxylate (5b): A mixture of 132 mg (0.7 mmol) of 3d and 100 mg (0.7 mmol) of dimethyl acetylenedicarboxylate in 5 ml of methanol was heated for 2 d at reflux. After partial removal of methanol, **5b** crystallized; yield 180 mg (86%), m. p. 148-150 °C. -IR (KBr): $\tilde{v} = 1742 \text{ cm}^{-1}$ (ester C=O), 1660 (amide C=O), 1630 (C=O), 1615, 1525. – UV (ethanol): λ_{max} (lg ϵ) = 328 nm (4.04), 300 (sh), 258 (4.08). - MS: $m/z = 299 [M^+]$.

C16H13NO5 (299.3) Calcd. C 64.21 H 4.38 N 4.68 Found C 64.20 H 4.20 N 4.64

Methyl 2,3-Dihydro-8-(4-methylbenzoyl)-5-oxo-5H-oxazolo[3,2a pyridine-7-carboxylate (5c): As described for 5b, 130 mg (83%) of 5c, m. p. 184 - 186 °C, was obtained from 102 mg (0.5 mmol) of 3e and 71 mg (0.5 mmol) of dimethyl acetylenedicarboxylate. - IR (KBr): $\tilde{v} = 1718 \text{ cm}^{-1}$ (ester C=O), 1660 (amide C=O), 1630 (C = O), 1595, 1515. – UV (ethanol): λ_{max} (lg ϵ) = 326 nm (4.07), 270 (4.12). - MS: $m/z = 313 [M^+]$.

C17H15NO5 (313.3) Caled. C 65.17 H 4.83 N 4.47 Found C 65.05 H 4.89 N 4.33

Methyl 8-(4-Chlorobenzoyl)-2,3-dihydro-5-oxo-5H-oxazolo/3,2a/pyridine-7-carboxylate (5d): As for 5b, 100 mg (60%) of 5d, m. p. 225-228 °C, was obtained from 112 mg (0.5 mmol) of 3g and 71 mg (0.5 mmol) of dimethyl acetylenedicarboxylate. - IR (KBr): $\tilde{\nu}$ = 1715 cm⁻¹ (ester C=O), 1660 (amide C=O), 1630 (C=O), 1597, 1570, 1515. – UV (ethanol): λ_{max} (lg ϵ) = 328 nm (4.13), 266 $(4.08). - MS: m/z = 333 [M^+].$

C₁₆H₁₂ClNO₅ (333.7) Calcd. C 57.58 H 3.63 N 4.20 Found C 57.62 H 3.62 N 4.27

Methyl 2,3-Dihydro-5-oxo-8-(2-thiophenecarbonyl)-5H-oxazolo[3,2-a]pyridine-7-carboxylate (5e): Like 5b, 100 mg (66%) of 5e, m. p. 172 - 174 °C, was obtained from 98 mg (0.5 mmol) of **3h** and 71 mg (0.5 mmol) of dimethyl acetylenedicarboxylate. - IR (KBr): $v = 1730 \text{ cm}^{-1}$ (ester C=O), 1678 (amide C=O), 1600 (C=O), 1520. – UV (ethanol): λ_{max} (lg ϵ) = 330 nm (4.10), 274 (3.96), 232 (sh). - MS: $m/z = 305 [M^+]$.

C14H11NO5S (305.3) Calcd. C 55.07 H 3.63 N 4.59 Found C 54.76 H 3.93 N 4.85

Methyl 2,3-Dihydro-2-methyl-8-(4-methylbenzoyl)-5-oxo-5H-oxazolo[3,2-a]pyridine-7-carboxylate (5f): As described for 5b, 150 mg (92%) of 5f, m. p. 153.5-155.5°C, was obtained from 109 mg (0.5 mmol) of 4e and 71 mg (0.5 mmol) of dimethyl acetylenedicarboxylate. – IR (KBr): $\tilde{v} = 1727 \text{ cm}^{-1}$ (ester C=O), 1668 (amide

C=O), 1637 (C=O), 1600, 1520. – UV (ethanol): λ_{max} (lg ϵ) = 328 nm (4.12), 270 (4.24). - MS: $m/z = 327 [M^+]$.

 $C_{18}H_{17}NO_5\ (327.3)$ Calcd. C 66.04 H 5.24 N 4.28 Found C 65.87 H 5.21 N 4.05

Methyl 2.3-Dihydro-8-(4-methoxybenzoyl)-2-methyl-5-oxo-5Hoxazolo[3,2-a]pyridine-7-carboxylate (5g): As for 5b, 200 mg (83%) of 5g, m. p. 169.5-170.5 °C, was obtained from 163 mg (0.7 mmol) of 4f and 100 mg (0.7 mmol) of dimethyl acetylenedicarboxylate. -IR (KBr): $\tilde{v} = 1735$ cm⁻¹ (ester C=O), 1668 (amide C=O), 1615 (C=O), 1597, 1528. – UV (ethanol): λ_{max} (lg ϵ) = 326 nm (4.14), 294 (4.21). - MS: m/z = 343 [M⁺].

C₁₈H₁₇NO₆ (343.3) Calcd. C 62.97 H 4.99 N 4.08 Found C 62.87 H 4.96 N 4.01

Methyl 8-(4-Chlorobenzoyl)-2,3-dihydro-2-methyl-5-oxo-5H-oxazolo[3,2-a]pyridine-7-carboxylate (5h): As described for 5b, 150 mg (86%) of 5h, m. p. 193-196°C, was obtained from 119 mg (0.5 mmol) of 4g and 71 mg (0.5 mmol) of dimethyl acetylenedicarboxylate. – IR (KBr): $\tilde{v} = 1730 \text{ cm}^{-1}$ (ester C=O), 1680 (amide C=O), 1630 (C=O), 1600, 1580, 1522. – UV (ethanol): λ_{max} $(\lg \varepsilon) = 328 \text{ nm} (4.24), 266 (4.20). - \text{MS:} m/z = 347 [M^+].$

C17H14CINO5 (347.7) Calcd. C 58.71 H 4.06 N 4.03 Found C 58.83 H 3.95 N 3.86

CAS Registry Numbers

2a: 15908-50-6 / 2b: 29866-43-1 / 2c: 3490-92-4 / 2d: 13636-88-9 / 2e: 41467-27-0 / 2f: 33868-76-7 / 2g: 41467-26-9 / 2h: 41467-29-2 / 2i: 78570-34-0 / 3a: 121373-62-4 / 3b: 121373-63-5 / 3c: 121373-64-6 / 3d: 121373-65-7 / 3e: 121373-66-8 / 3f: 121373-67-9 / 3g: 121373-68-0 / 3h: 121373-69-1 / 3i: 121373-70-4 / 3j: 121373-71-5 / 4a: 121373-72-6 / 4c: 121373-73-7 / 4d: 121373-74-8 / 4e: 121373-75-9 / 4f: 121373-76-0 / 4g: 121373-77-1 / 4h: 121373-78-2 / 4i: 121373-79-3 / **5a**: 121373-80-6 / **5b**: 121373-81-7 / **5c**: 121373-82-8 / **5d**: 121373-83-9 / **5e**: 121373-84-0 / **5f**: 121373-85-1 / **5g**: 121373-86-2 / **5h**: 121373-87-3 / 2-aminoethanol: 141-43-5 / 1-amino-2-propanol: 78-96-6 / ethyl propiolate: 623-47-2 / dimethyl acetylenedicarboxylate: 762-42-5

- ¹⁾ R. Gompper, H. Schaefer, Chem. Ber. 100 (1967) 591.
- ²⁾ S. Rajappa, R. Sreenivasan, B. G. Advani, R. H. Summervill, R. Hoffmann, Indian J. Chem., Sect. B, 15 (1977) 297.
- ³⁾ W.-D. Rudorf, M. Augustin, J. Prakt. Chem. 319 (1977) 545.
- ⁴⁾ M. Augustin, C. Groth, J. Prakt. Chem. **321** (1979) 205. ⁵⁾ M. Augustin, C. Groth, J. Prakt. Chem. **321** (1979) 215.

- ⁶ M. Augustin, G. Jahreis, J. Prakt. Chem. **321** (1979) 699.
 ⁷⁾ M. Augustin, W. Doelling, J. Prakt. Chem. **324** (1982) 3.
 ⁸⁾ M. D. Nair, S. Rajappa, J. A. Desai, Indian J. Chem., Sect. B, **21** (1982) 1
- ⁹⁾ M. D. Nair, J. A. Desai, Indian J. Chem., Sect. B, 21 (1982) 4. ¹⁰⁾ S. Rajappa, M. D. Nair, R. Sreenivasan, B. G. Advani, Tetrahedron 38 (1982) 1673.
- ¹¹ Z.-T. Huang, H. Wamhoff, *Chem. Ber.* **117** (1984) 622. ¹² Z.-T. Huang, H. Wamhoff, *Chem. Ber.* **117** (1984) 1856. ¹³ Z.-T. Huang, H. Wamhoff, *Chem. Ber.* **117** (1984) 1926.

- ¹⁴⁾ Z.-T. Huang, L.-H. Tzai, Chem. Ber. 119 (1986) 2208.
- ¹⁵⁾ Z.-T. Huang, Z.-R. Liu, Heterocycles 24 (1986) 2247.
- ¹⁶⁾ Z.-T. Huang, X.-J. Wang, Tetrahedron Lett. 28 (1987) 1527.
- ¹⁷⁾ Z.-T. Huang, X.-J. Wang, Chem. Ber. **120** (1987) 1803.
- 18) Z.-T. Huang, Z.-R. Liu, Synthesis 1987, 357
- ¹⁹⁾ R. Gompper, W. Toepft, Chem. Ber. 95 (1962) 2861. ²⁰⁾ K. Hirai, H. Matsuda, Y. Kishda, Chem. Pharm. Bull. 20 (1971)
- ²¹⁾ N. B. Mansaur, W.-D. Rudorf, M. Augustin, Z. Chem. 21 (1981) 69
- ²²⁾ S. Rajappa, B. G. Advani, Proc. Indian Acad. Sci. (Chem. Sci.) **91** (1982) 463.
- ²³⁾ Z.-T. Huang, X. Shi, Synthesis, to be published.
- ²⁴⁾ Z.-T. Huang, Z.-R. Liu, Synth. Commun., to be published.

[125/89]